371 research outputs found

    Structural biology and phylogenetic estimation

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62633/1/388527a0.pd

    The hr1 and Fusion Peptide Regions of the Subgroup B Avian Sarcoma and Leukosis Virus Envelope Glycoprotein Influence Low pH-Dependent Membrane Fusion

    Get PDF
    The avian sarcoma and leukosis virus (ASLV) envelope glycoprotein (Env) is activated to trigger fusion by a two-step mechanism involving receptor-priming and low pH fusion activation. In order to identify regions of ASLV Env that can regulate this process, a genetic selection method was used to identify subgroup B (ASLV-B) virus-infected cells resistant to low pH-triggered fusion when incubated with cells expressing the cognate TVB receptor. The subgroup B viral Env (envB) genes were then isolated from these cells and characterized by DNA sequencing. This led to identification of two frequent EnvB alterations which allowed TVB receptor-binding but altered the pH-threshold of membrane fusion activation: a 13 amino acid deletion in the host range 1 (hr1) region of the surface (SU) EnvB subunit, and the A32V amino acid change within the fusion peptide of the transmembrane (TM) EnvB subunit. These data indicate that these two regions of EnvB can influence the pH threshold of fusion activation

    Birthweight, Maternal Weight Trajectories and Global DNA Methylation of LINE-1 Repetitive Elements

    Get PDF
    Low birthweight, premature birth, intrauterine growth retardation, and maternal malnutrition have been related to an increased risk of cardiovascular disease, type 2 diabetes mellitus, obesity, and neuropsychiatric disorders later in life. Conversely, high birthweight has been linked to future risk of cancer. Global DNA methylation estimated by the methylation of repetitive sequences in the genome is an indicator of susceptibility to chronic diseases. We used data and biospecimens from an epigenetic birth cohort to explore the association between trajectories of fetal and maternal weight and LINE-1 methylation in 319 mother-child dyads. Newborns with low or high birthweight had significantly lower LINE-1 methylation levels in their cord blood compared to normal weight infants after adjusting for gestational age, sex of the child, maternal age at delivery, and maternal smoking during pregnancy (p = 0.007 and p = 0.036, respectively), but the magnitude of the difference was small. Infants born prematurely also had lower LINE-1 methylation levels in cord blood compared to term infants, and this difference, though small, was statistically significant (p = 0.004). We did not find important associations between maternal prepregnancy BMI or gestational weight gain and global methylation of the cord blood or fetal placental tissue. In conclusion, we found significant differences in cord blood LINE-1 methylation among newborns with low and high birthweight as well as among prematurely born infants. Future studies may elucidate whether chromosomal instabilities or other functional consequences of these changes contribute to the increased risk of chronic diseases among individuals with these characteristics

    How and When Socially Entrepreneurial Nonprofit Organizations Benefit From Adopting Social Alliance Management Routines to Manage Social Alliances?

    Get PDF
    Social alliance is defined as the collaboration between for-profit and nonprofit organizations. Building on the insights derived from the resource-based theory, we develop a conceptual framework to explain how socially entrepreneurial nonprofit organizations (SENPOs) can improve their social alliance performance by adopting strategic alliance management routines. We test our framework using the data collected from 203 UK-based SENPOs in the context of cause-related marketing campaign-derived social alliances. Our results confirm a positive relationship between social alliance management routines and social alliance performance. We also find that relational mechanisms, such as mutual trust, relational embeddedness, and relational commitment, mediate the relationship between social alliance management routines and social alliance performance. Moreover, our findings suggest that different types of social alliance motivation can influence the impact of social alliance management routines on different types of the relational mechanisms. In general, we demonstrate that SENPOs can benefit from adopting social alliance management routines and, in addition, highlight how and when the social alliance management routines–social alliance performance relationship might be shaped. Our study offers important academic and managerial implications, and points out future research directions

    Immunodepletion of high-abundant proteins from acute and chronic wound fluids to elucidate low-abundant regulators in wound healing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The process of wound healing consists of several well distinguishable and finely tuned phases. For most of these phases specific proteins have been characterized, although the underlying mechanisms of regulation are not yet fully understood. It is an open question as to whether deficits in wound healing can be traced back to chronic illnesses such as diabetes mellitus. Previous research efforts in this field focus largely on a restricted set of marker proteins due to the limitations detection by antibodies imposes. For mechanistic purposes the elucidation of differences in acute and chronic wounds can be addressed by a less restricted proteome study. Mass spectrometric (MS) methods, e.g. multi dimensional protein identification technology (MudPIT), are well suitable for this complex theme of interest. The human wound fluid proteome is extremely complex, as is human plasma. Therefore, high-abundant proteins often mask the mass spectrometric detection of lower-abundant ones, which makes a depletion step of such predominant proteins inevitable.</p> <p>Findings</p> <p>In this study a commercially available immunodepletion kit was evaluated for the detection of low-abundant proteins from wound fluids. The dynamic range of the entire workflow was significantly increased to 5-6 orders of magnitude, which makes low-abundant regulatory proteins involved in wound healing accessible for MS detection.</p> <p>Conclusion</p> <p>The depletion of abundant proteins is absolutely necessary in order to analyze highly complex protein mixtures such as wound fluids using mass spectrometry. For this the used immunodepletion kit is a first but important step in order to represent the entire dynamic range of highly complex protein mixtures in the future.</p

    Prenatal Famine and Genetic Variation Are Independently and Additively Associated with DNA Methylation at Regulatory Loci within IGF2/H19

    Get PDF
    Both the early environment and genetic variation may affect DNA methylation, which is one of the major molecular marks of the epigenome. The combined effect of these factors on a well-defined locus has not been studied to date. We evaluated the association of periconceptional exposure to the Dutch Famine of 1944–45, as an example of an early environmental exposure, and single nucleotide polymorphisms covering the genetic variation (tagging SNPs) with DNA methylation at the imprinted IGF2/H19 region, a model for an epigenetically regulated genomic region. DNA methylation was measured at five differentially methylated regions (DMRs) that regulate the imprinted status of the IGF2/H19 region. Small but consistent differences in DNA methylation were observed comparing 60 individuals with periconceptional famine exposure with unexposed same-sex siblings at all IGF2 DMRs (PBH<0.05 after adjustment for multiple testing), but not at the H19 DMR. IGF2 DMR0 methylation was associated with IGF2 SNP rs2239681 (PBH = 0.027) and INS promoter methylation with INS SNPs, including rs689, which tags the INS VNTR, suggesting a mechanism for the reported effect of the VNTR on INS expression (PBH = 3.4×10−3). Prenatal famine and genetic variation showed similar associations with IGF2/H19 methylation and their contributions were additive. They were small in absolute terms (<3%), but on average 0.5 standard deviations relative to the variation in the population. Our analyses suggest that environmental and genetic factors could have independent and additive similarly sized effects on DNA methylation at the same regulatory site

    Towards the clinical implementation of pharmacogenetics in bipolar disorder.

    Get PDF
    BackgroundBipolar disorder (BD) is a psychiatric illness defined by pathological alterations between the mood states of mania and depression, causing disability, imposing healthcare costs and elevating the risk of suicide. Although effective treatments for BD exist, variability in outcomes leads to a large number of treatment failures, typically followed by a trial and error process of medication switches that can take years. Pharmacogenetic testing (PGT), by tailoring drug choice to an individual, may personalize and expedite treatment so as to identify more rapidly medications well suited to individual BD patients.DiscussionA number of associations have been made in BD between medication response phenotypes and specific genetic markers. However, to date clinical adoption of PGT has been limited, often citing questions that must be answered before it can be widely utilized. These include: What are the requirements of supporting evidence? How large is a clinically relevant effect? What degree of specificity and sensitivity are required? Does a given marker influence decision making and have clinical utility? In many cases, the answers to these questions remain unknown, and ultimately, the question of whether PGT is valid and useful must be determined empirically. Towards this aim, we have reviewed the literature and selected drug-genotype associations with the strongest evidence for utility in BD.SummaryBased upon these findings, we propose a preliminary panel for use in PGT, and a method by which the results of a PGT panel can be integrated for clinical interpretation. Finally, we argue that based on the sufficiency of accumulated evidence, PGT implementation studies are now warranted. We propose and discuss the design for a randomized clinical trial to test the use of PGT in the treatment of BD

    Genetic and Non-Genetic Influences during Pregnancy on Infant Global and Site Specific DNA Methylation: Role for Folate Gene Variants and Vitamin B12

    Get PDF
    Inter-individual variation in patterns of DNA methylation at birth can be explained by the influence of environmental, genetic and stochastic factors. This study investigates the genetic and non-genetic determinants of variation in DNA methylation in human infants. Given its central role in provision of methyl groups for DNA methylation, this study focuses on aspects of folate metabolism. Global (LUMA) and gene specific (IGF2, ZNT5, IGFBP3) DNA methylation were quantified in 430 infants by Pyrosequencing®. Seven polymorphisms in 6 genes (MTHFR, MTRR, FOLH1, CβS, RFC1, SHMT) involved in folate absorption and metabolism were analysed in DNA from both infants and mothers. Red blood cell folate and serum vitamin B12 concentrations were measured as indices of vitamin status. Relationships between DNA methylation patterns and several covariates viz. sex, gestation length, maternal and infant red cell folate, maternal and infant serum vitamin B12, maternal age, smoking and genotype were tested. Length of gestation correlated positively with IGF2 methylation (rho = 0.11, p = 0.032) and inversely with ZNT5 methylation (rho = −0.13, p = 0.017). Methylation of the IGFBP3 locus correlated inversely with infant vitamin B12 concentration (rho = −0.16, p = 0.007), whilst global DNA methylation correlated inversely with maternal vitamin B12 concentrations (rho = 0.18, p = 0.044). Analysis of common genetic variants in folate pathway genes highlighted several associations including infant MTRR 66G>A genotype with DNA methylation (χ2 = 8.82, p = 0.003) and maternal MTHFR 677C>T genotype with IGF2 methylation (χ2 = 2.77, p = 0.006). These data support the hypothesis that both environmental and genetic factors involved in one-carbon metabolism influence DNA methylation in infants. Specifically, the findings highlight the importance of vitamin B12 status, infant MTRR genotype and maternal MTHFR genotype, all of which may influence the supply of methyl groups for DNA methylation. In addition, gestational length appears to be an important determinant of infant DNA methylation patterns

    Haplotype Reconstruction Error as a Classical Misclassification Problem: Introducing Sensitivity and Specificity as Error Measures

    Get PDF
    BACKGROUND: Statistically reconstructing haplotypes from single nucleotide polymorphism (SNP) genotypes, can lead to falsely classified haplotypes. This can be an issue when interpreting haplotype association results or when selecting subjects with certain haplotypes for subsequent functional studies. It was our aim to quantify haplotype reconstruction error and to provide tools for it. METHODS AND RESULTS: By numerous simulation scenarios, we systematically investigated several error measures, including discrepancy, error rate, and R(2), and introduced the sensitivity and specificity to this context. We exemplified several measures in the KORA study, a large population-based study from Southern Germany. We find that the specificity is slightly reduced only for common haplotypes, while the sensitivity was decreased for some, but not all rare haplotypes. The overall error rate was generally increasing with increasing number of loci, increasing minor allele frequency of SNPs, decreasing correlation between the alleles and increasing ambiguity. CONCLUSIONS: We conclude that, with the analytical approach presented here, haplotype-specific error measures can be computed to gain insight into the haplotype uncertainty. This method provides the information, if a specific risk haplotype can be expected to be reconstructed with rather no or high misclassification and thus on the magnitude of expected bias in association estimates. We also illustrate that sensitivity and specificity separate two dimensions of the haplotype reconstruction error, which completely describe the misclassification matrix and thus provide the prerequisite for methods accounting for misclassification

    Abacavir, efavirenz, didanosine, with or without hydroxyurea, in HIV-infected adults failing initial nucleoside/protease inhibitor-containing regimens

    Get PDF
    BACKGROUND: Hydroxyurea (HU) is an immunomodulatory agent that has been documented to enhance the antiretroviral activity of nucleoside reverse transcriptase inhibitors, such as abacavir (ABC) and didanosine (ddI), and would be expected to improve virologic efficacy. METHODS: A 48-week, phase IV, multicenter, open-label, proof-of-concept clinical trial was conducted to evaluate second-line, protease inhibitor (PI)-sparing therapy with ABC/efavirenz (EFV)/ddI plus HU or without HU in HIV-infected subjects failing to achieve HIV-1 RNA ≤ 400 copies/mL after ≥ 16 weeks of treatment with lamivudine/zidovudine or lamivudine/stavudine, plus 1 or 2 PIs. Subjects were assigned to ABC (300 mg twice daily)/ EFV (600 mg once daily)/ ddI (400 mg once daily) plus HU (500 mg twice daily) (n = 30) or this regimen without HU (n = 24). RESULTS: Baseline mean HIV-1 RNA was 3.86 log(10 )copies/mL and CD4+ cell count was 345 cells/mm(3). A similar percentage of subjects in the non-HU arm (58%) and HU arm (53%) completed the study. Intent-to-treat: missing = failure analysis showed no differences in proportions of subjects in the non-HU and HU arms achieving undetectable plasma HIV-1 RNA levels at week 24 (<400 copies/mL: 58% [14/24] vs 57% [17/30], P = 0.899; <50 copies/mL (50% [12/24] vs 47% [14/30], P = 0.780). Median change from baseline in CD4+ cell count in the non-HU and HU arms at week 48 was +114 cells/mm(3 )and -63 cells/mm(3 )(P = 0.007), respectively. Both regimens were generally well tolerated, although more subjects in the HU arm withdrew prematurely from the study due to adverse events (23% vs 4%). Four cases of possible ABC-related hypersensitivity were observed. CONCLUSION: ABC/EFV/ddI was an effective and well-tolerated second-line regimen for nucleoside/PI-experienced HIV-infected subjects. The addition of HU blunted the CD4+ cell response, did not appear to enhance antiviral activity, and resulted in more treatment-limiting adverse events
    • …
    corecore